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Abstract

The aim of this dissertation is to discuss the support for inaccessible and Mahlo cardinals
based on reflection principles and the iterative conception. Including reflection in the
iterative conception allows us to build a hierarchy of stronger reflection principles. The
dissertation will exhibit derivations of the existence of inaccessible and Mahlo cardinals
from these principles and critically discuss the use of second-order logic involved.



Acknowledgements

I would like to thank my supervisor, Dr. Robin Knight, for all his support during the
writing of this dissertation. I would also like to thank Dr. Alexander Paseau, Dr. Rolf
Suabedissen, and Robert Leek for offering many helpful thoughts and questions during
my presentation on this topic.

1



Contents

1 Introduction 3

2 The Iterative Conception 4
2.1 Axiomatisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Choosing axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Equivalence to ZF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Derivation of ZF from the iterative conception . . . . . . . . . . . . 7
2.3.2 Derivation of the iterative conception axioms within ZF . . . . . . . 11

2.4 The Axiom of Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Reflection principles and large cardinals 15
3.1 An alternative form of reflection . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Large cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 A similar step? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 A stronger result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 A hierarchy of reflection principles . . . . . . . . . . . . . . . . . . . . . . . 27

4 Conclusion 31
4.1 Larger cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Appendix A Reflection in n variables 35

2



Chapter 1

Introduction

Large cardinals – cardinals that cannot be obtained by any of the methods provided by
ZFC – are an active area of current research, with applications in descriptive set theory,
combinatorics and consistency strength of axioms. Since their existence does not follow
from ZFC, and in fact even proves its consistency, it is important to justify our use of
large cardinals. In this dissertation, we will focus on inaccessible and Mahlo cardinals,
two “small” kinds of large cardinal which both give rise to models of ZFC.

We begin by setting out and justifying an elegant axiomatisation of the iterative concep-
tion of set theory due to Dana Scott (1974). The iterative conception is a natural and
popular view of set theory which stratifies the universe of sets into stages.

In particular, Scott’s axiomatisation contains a reflection axiom. In the second part of the
dissertation, we show how reflection can be strengthened to give models of ZF, following
Lévy (1960). We critically discuss Lévy’s argument that it is a natural step to move from
this strengthened reflection to a principle that gives the existence of inaccessible cardinals,
concluding that his assumption of second-order logic is in fact too strong a premise.

In the last two sections, we prove that if we assume this stronger principle, the inaccessible
cardinals are in fact unbounded. Further, we build a hierarchy of increasingly powerful
reflection principles which allow us to deduce the existence of Mahlo cardinals. The
intention of these two results is to motivate further research on the justification of the
“missing step” in Lévy’s argument from Scott’s reflection axiom to Lévy’s stronger axioms,
since they have such desirable consequences. Further applications of reflection principles
to large cardinals are mentioned in the conclusion.

This dissertation is aimed at any mathematician or logician of fourth-year undergraduate
level or beyond. Familiarity with the axioms of ZFC will be assumed, as well as some
knowledge of model theory.
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Chapter 2

The Iterative Conception

The idea that we form sets by taking elements and ‘gathering’ them into a set is widespread
and dates back to Cantor’s much-quoted notion that a set is

“any collection . . . into a whole of definite, well-distinguished objects . . . of our
intuition or thought” (as translated in Boolos, 1971)

We naturally think: here are some things, now we gather them into a collection (a
“whole”). Now we have a set. So in some sense, the elements of a set exist prior to
it.

More concretely, if we assume there are no individuals (non-sets)1 then at first the only
collection, i.e. set we can form is empty. At the next stage, we form all collections of
objects we had previously. We keep going, reaching an ω’th stage and continuing beyond
it, in fact “keeping going” beyond any ordinal we may come across. Note that at each
stage we end up repeating the sets we had at previous stages. This process stratifies our
universe of sets into stages to which the sets belong and is called the iterative conception
or iterative hierarchy. A key idea is that we always collect all possible sets at each stage,
and continue (transfinitely) as far as possible. (This is sometimes known as the maximal
iterative conception (Wang, 1983)).

One might ask how can we use ordinals to enumerate our stages, if we are trying to build
set theory from scratch. We will see when we axiomatise the iterative conception that
there is a neat way of doing without ordinals – and even without Foundation – and then
deriving these notions from our axioms.

This difficulty aside, this conception of set formation and set theory seems a natural and
coherent one. Boolos (1989) (as interpreted by Paseau, 2007) argues that it is a unified
picture – no parts of it seem as easy to justify on their own as within the conception –
and that the principles within it are very simple, in particular more simple than their
consequences. Further it is a familiar and actual conception used by many mathemati-
cians, so we will henceforth assume it is a solid foundation on which to build the rest of
our justification and mathematics.2

1While the iterative conception may often include individuals or urelements, hereditary sets are suffi-
cient to express any set we may wish to consider, so we need not assume any individuals.

2For excellent and more detailed justifications of the iterative conception, see Boolos (1971) or Wang
(1983).
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2.1 Axiomatisation

Why use a different axiomatisation for the iterative conception to ZFC? It is, as we will
see in Section 2.3.2, perfectly possible to express the iterative hierarchy of sets within
ZFC. However, this fails to capture the idea that the iterative conception is at the base
of our understanding of sets.

There are many axiomatisations of the iterative conception. A well-known one is given in
Boolos (1971). We will use Dana Scott’s 1974 axiomatisation. Its axioms have the virtues
of being compact and, except possibly in the case of Reflection, very intuitive. Reflection
is a concise and powerful axiom that will be very useful to us later in linking the iterative
conception and large cardinals.

Our first two axioms are shared with ZFC.

Extensionality. ∀x ∀y (∀z(z ∈ x↔ z ∈ y)→ x = y).

Comprehension. ∀x∃y ∀z (z ∈ y ↔ (z ∈ x ∧ ϕ(z))) (where ϕ may have other free
variables).

The remaining axioms relate specifically to the iterative conception. We assume for now
that we can quantify over stages V, V ′, V ′′, etc. Within ZFC, it is possible to remove this
by quantifying over ordinals – sets with a certain property – and identifying each stage
with an ordinal.

Recall that given a stage, we form the next stage by taking all the sets of sets in the given
stage, which includes any sets we had before. Hence a “later” stage contains all sets and
subsets of “earlier” stages, and further contains nothing else. We take our stages to be
sets in their own right, namely sets of their members, and denote ‘V ′ is earlier than V ’
simply by V ′ ∈ V .

Accumulation. ∀V ′ ∀x (x ∈ V ′ ↔ (∀y (y /∈ x) ∨ ∃V ∈ V ′(x ∈ V ∨ x ⊆ V ))).

We will see later that there is a first stage, which then must contain nothing but the
empty set.3

We next express the idea that the iterative hierarchy of stages captures all sets eventually.

Restriction. ∀x∃V (x ⊆ V ).

This axiom gives the existence of at least one level. Our final axiom tells us more about
the “extent” of our stages. We use ϕV to denote the relativisation of ϕ to V .

Reflection. ∃V ∀x ∈ V (ϕ(x) → ϕV (x)). ϕ may contain other free variables beyond x.
(Note that the given V depends on ϕ.)

That is, for each ϕ(x) which is true in the whole universe, we can find some subset of the
universe in which ϕ also holds. For example, if for all sets x in the universe there exists
y = {x} in the universe, then there exists V such that for all x ∈ V , there is y = {x} ∈ V .
So applying ‘set of’ never takes us outside of V . Further, our stages get very large: if we
have some ordinal4 α, then we can take ϕ ≡ ∃x (x = α) to get ∃V α ∈ V .

3Scott’s version of Accumulation includes urelements which occur in all stages. As we assume there
are no non-sets, the relevant clause becomes ‘the empty set is contained in all stages’.

4By Section 3.3, the notion of ordinals does not change when relativised to V .
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While the other axioms seemed very intuitive, Reflection is not quite so obvious. We will
discuss below why we should accept Reflection, and show in Section 2.3 that Reflection
is equivalent to the ZF axioms Infinity and Replacement.

2.2 Choosing axioms

Maddy (1988) argues that the axioms of ZFC need justifying rather than just stating at
the beginning of every undergraduate textbook. In the same spirit we should discuss why
we chose precisely these five axioms.

Extensionality is viewed by many, following Boolos (1971, pp. 229-230), to be analytic,
i.e. expressing, or contained in, or equivalent to the definition of set.5 Hence our axioma-
tisation must contain Extensionality in order to be an axiomatisation of set theory. For
if someone says “there are two distinct sets whose members are the same”, we are far
more likely to conclude that they do not mean what they say than if they contradict any
other axiom. (For example, that they do not mean ‘set’, but rather some collection with
additional defining properties.)

The same can be said to a lesser degree about Comprehension. Given a set x, the ability
to take a subset of it satisfying a certain property is certainly part of our intuition about
sets. (Arguably, we intuitively think we ought to be able to take any set with a certain
property, but of course this leads to Russell’s Paradox. Comprehension may not fully
capture our intuition, but it is certainly a part of it.)

Accumulation and Restriction are central to the iterative conception – in a sense, they are
also analytic for it. Accumulation is essentially a definition of stages, while Restriction
states that the iterative conception “works”, i.e. captures everything.

The two also gain some support from a principle Maddy calls Maximize, i.e. that our set
theory should be as “broad” and as “tall” as possible, i.e. should include as many sets,
as possible. The ordinals should be inexhaustible (whatever operation we apply, we can
always find an ordinal beyond it) and power sets should be very rich or “thick”. In this
sense, Accumulation gives the breadth of the hierarchy and the richness of power sets (as
it collects all possible subsets into the next stage) while Restriction gives the height of
the hierarchy.

The beauty of this axiomatisation when compared to ZFC is that no arbitrariness appears
in our choice of axioms so far (Scott, 1974, p. 212). Assuming we believe in the iterative
conception, each axiom follows self-evidently from the conception (and the notion of set).
ZFC is certainly a practical axiomatisation but it is slightly harder to see why – beyond
those practical reasons – we should pick some of its axioms over others.

Our Axiom of Reflection is a (weak) formulation of a broader principle of Reflection. The
principle states that the universe is so rich and so complex that any description we may
have of it in fact is also true of just a small part of it, usually a set or proper class. In
other words, any attempt at “the universe is the unique collection satisfying . . . ” fails,
as this property will reflect downwards to some subset.

5This is, as Boolos himself says, under the assumption that any distinction can be made between
analytic and synthetic statements at all.
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Reflection is on the whole very popular. Maddy describes it as “the most universally
accepted rule of thumb in higher set theory” (1988, p. 503). Notable proponents are
Gödel (1989, p. 146), Reinhardt (1974) and Kanamori and Magidor (1977).

We can prove weak reflection principles within ZFC (see Section 2.3.2), thus lending
further support to their validity (if we assume ZFC is true). We do not claim to capture
reflection fully in our axiom. We will later see stronger axioms which encapsulate more
of it, but must also fall short by the principle’s very nature. (If we could find a reflection
principle which described the whole universe, there must be a proper class of the universe
in which it holds . . . )

The intuitiveness of Reflection is contested. Paseau (2007, p. 44) asserts that Reflection
is highly intuitive, while Scott (1974) asserts that it is not as intuitive as Infinity and
Replacement, its ZFC counterparts (see Section 2.3). Certainly to the novice set theorist,
Infinity and Replacement may be easier to comprehend. However Maddy (2011) and
others have argued that it takes experience of working with set theory to fully appreciate
the intuitiveness of an axiom. Finally, Scott argues that while Reflection may not be as
intuitive, it has “all the practical advantages of a good axiom” (1974, p. 213) (for example,
it is powerful, simple to state, and unifies existing principles (Wang, 1983, p. 551)).

2.3 Equivalence to ZF

2.3.1 Derivation of ZF from the iterative conception

To satisfy ourselves that the set theory we have axiomatised is our usual one, we will
proceed to derive the axioms of ZF, largely following Scott (1974).

It immediately follows from Restriction that a stage exists, and hence by Accumulation
it contains the empty set, which then exists in our stage theory.

Theorem 2.1 (Empty Set). ∃V ∃x ∈ V ∀y ¬y ∈ x.

We next show the Axiom of Foundation. Scott’s axiomatisation stands out in not needing
to assume Foundation (or equivalently a well-founded class of ordinals corresponding to
the stages).

Theorem 2.2 (Transitivity of stages). ∀V, V ′ V ∈ V ′ → V ⊆ V ′.

Proof. Suppose x ∈ V ∈ V ′. By the reverse implication of Accumulation we immediately
get x ∈ V ′.

Definition 2.1. We call a set x grounded if ∀a(x ∈ a → ∃y ∈ a ∀z ∈ a z /∈ y). That is,
if and only if x is contained only in well-founded sets. Further define for every stage V

‖V ‖ = {x ∈ V : ∀a(x ∈ a→ ∃y ∈ a y ∩ a = ∅)}

to be the set of grounded subsets of V (where ‘y ∩ a = ∅’ abbreviates ∀z ∈ a z /∈ y).

We will show that in fact all stages are grounded and hence derive Foundation.

Lemma 2.3 (Grounded subsets of stages). ∀V (V ∈ V ′ → ‖V ‖ ∈ ‖V ′‖)
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Proof. Suppose V ∈ V ′. By Accumulation ‖V ‖ ∈ V ′. Suppose ‖V ‖ ∈ a for some a. If
‖V ‖ ∩ a 6= ∅, then by definition of ‖V ‖ there is y ∈ a such that y ∩ a = ∅. Hence ‖V ‖ is
well-founded in V ′ and so ‖V ‖ ∈ ‖V ′‖.

Theorem 2.4 (Transitivity). ∀V ∀x (x ∈ V → x ⊆ V ).

Proof. Suppose x ∈ V , set a = {‖V ′‖ : V ′ ∈ V ∧ x ∈ V ′}. By Comprehension over ‖V ‖,
the set a ⊂ ‖V ‖ is well-defined. Suppose a = ∅, then ∀V ′ ∈ V x /∈ V ′. Accumulation
gives x ⊆ V ′ ∈ V so by transitivity of stages x ⊆ V .
Suppose a 6= ∅, then as a ⊆ ‖V ‖ find ‖V ′‖ ∈ a such that ‖V ′‖ ∩ a = ∅. As x ∈ V ′,
Accumulation gives ∃V ′′ ∈ V ′(x ∈ V ′′ ∨ x ⊆ V ′′). The case x ∈ V ′′ is impossible as
then ‖V ′′‖ ∈ ‖V ′‖ = y (by Lemma 2.3) and ‖V ′′‖ ∈ a by definition of a, contradicting
a ∩ ‖V ′‖ = ∅. So x ⊆ V ′′ ⊆ V ′ ⊆ V as required.

Theorem 2.5 ((Full) Foundation). Let ϕ be any formula. Then

(∃x ϕ(x)→ ∃x(ϕ(x) ∧ ∀y ∈ x ¬ϕ(y)))

Proof. Assume ϕ(z). By Restriction, z ⊆ V for some V . Again let

a = {‖V ′‖ : V ′ ∈ V ∧ ∃x ⊆ V ′ ϕ(x)}

By Lemma 2.3 a ⊆ ‖V ‖ and so a exists by Comprehension.
Suppose a = ∅, then there is no V ′ such that ∃x ⊆ V ′ ϕ(x), equivalently by Transitivity
∃x ∈ V ′ ϕ(x). Suppose ∃w ∈ z ϕ(w), then w ∈ V ′ ∈ V or w ⊆ V ′ ∈ V for some V ′′ by
Accumulation, so we have ¬∃w ∈ z ϕ(y).
If a 6= ∅, choose ‖V ′‖ ∈ a with ‖V ′‖ ∩ a = ∅ as in the previous proof. As ‖V ′‖ ∈ a there
exists x ⊆ V ′ such that ϕ(x). Suppose ∃w ∈ x ϕ(w), then by Accumulation for w there
is V ′′ ∈ V ′ with w ⊆ V ′′ ∈ V ′ or w ∈ V ′′ ∈ V ′ (so by Transitivity w ⊆ V ′′ ∈ V ′). But
then ‖V ′′‖ ∈ ‖V ′‖ ∩ a, contradicting our choice of V ′′.

Corollary 2.6 (Foundation). ∀a(a 6= ∅→ ∃x ∈ a(∀y ∈ a y /∈ x)).

We now show that the stages are well-ordered. In particular this will imply a least stage,
which is in line with our original notion of “starting” with the empty set, and building
sets from there.

Lemma 2.7 (Irreflexivity of stages). ∀V (V /∈ V ).

Proof. Suppose there is V such that V ∈ V . By Comprehension we can form

a = {x ∈ V : x /∈ x}

By construction a ⊆ V , so by Accumulation (since V ∈ V ), a ∈ V . Proceed as with
Russell’s paradox (suppose a ∈ a . . . ) to get a contradiction.

Theorem 2.8 (Well-ordering of stages). The stages V, V ′, . . . are well-ordered by ∈.

Proof. We have already proved irreflexivity and transitivity. Consider a non-empty set
of stages given by a property ψ(V ). To show it has an in-minimal element, set ϕ(x) ≡
(ψ(x) ∧ ∃V x = V ). Apply full Foundation to ϕ to get

∃V ψ(V )→ ∃V (ψ(V ) ∧ ¬∃V ′ ∈ V ψ(V ′)) (2.1)
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It remains to prove linear ordering of the stages:

∀V ∀V ′(V ∈ V ′ ∨ V = V ′ ∨ V ′ ∈ V )

Suppose not, then by (2.1) we can pick V such that ¬∀V ′(V ∈ V ′∨V = V ′∨V ′ ∈ V ) and
no V ′′ ∈ V has this property. By (2.1) again pick V ′ least so that V /∈ V ′∧V 6= V ′∧V ′ /∈ V .
Suppose now V ′′ ∈ V . Then V ′′ 6= V ′ and since V ′ /∈ V , by Transitivity V ′ /∈ V ′′ holds.
Since V is minimal such that linear ordering does not hold, we must have V ′′ ∈ V ′.
Conversely suppose V ′′ ∈ V ′. By choice of V we again have V ′′ 6= V and V /∈ V ′′. By
minimality of V ′ we get V ′′ ∈ V . So we have shown

∀V ′′(V ′′ ∈ V ↔ V ′′ ∈ V ′) (2.2)

Suppose x ∈ V . By Accumulation there exists V ′′ ∈ V such that x ∈ V ′′ or x ⊆ V ′′. By
(2.2) V ′′ ∈ V and x ∈ V ′′ or x ⊆ V ′′, so x ∈ V ′ by Accumulation. Similarly if x ∈ V ′. So
∀x(x ∈ V ↔ x ∈ V ′), so V = V ′, contradiction.

Theorem 2.9 (Unions). ∀x∃y∀z(z ∈ y ↔ ∃w ∈ x(z ∈ w)).

Proof. Fix some x. By Restriction ∃V (x ⊆ V ). If ∃w ∈ x (z ∈ w), then as w ∈ x ∈ V by
Transitivity w ∈ V and z ∈ V . So we can apply Comprehension over V to the formula
ϕ(x, z) ≡ ∃w ∈ x(z ∈ w) to get ∃y∀z(z ∈ y ↔ (z ∈ V ∧ ϕ(x, z))) (where we can drop
z ∈ V ).

From this point onward we also use Reflection. (Scott proves weak versions of Pairs and
Power Set without Reflection, but instead we will provide proofs of full Pairs and Power
Set which he leaves to the reader.)

Theorem 2.10 (Strong Restriction). ∀x∃V x ∈ V .

Proof. Let ϕ(z) ≡ ∃y z = y. Apply Reflection with no free variables, i.e. keeping z free.
Then we get ∃V (∃y z = y → ∃y ∈ V z = y) which simplifies to ∃V z ∈ V .

Theorem 2.11 (Power Set). ∀x∃y∀z(z ∈ y ↔ z ⊆ x).

Proof. Fix x 6= ∅. By Strong Restriction, ∃V x ∈ V . By Accumulation and Transitivity,
there is V ′ ∈ V such that x ⊆ V ′. Now let ϕ(z, x) ≡ z ⊆ x. By Comprehension,
∃y∀z(z ∈ y ↔ (z ∈ V ∧ z ⊆ x)). The condition z ∈ V vanishes as z ⊆ x ⊆ V ′ ∈ V gives
z ∈ V by Accumulation.

Theorem 2.12 (Pairs). ∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)).

Proof. Fix x, y. As in the proof of Strong Restriction, apply Reflection to

ϕ(x, y) ≡ (∃w (x = w) ∧ ∃z (y = z))

This gives ∃V (x ∈ V ∧ y ∈ V ). Now let ψ(w) ≡ (w = x ∨ w = y). By Comprehension
over V we get

∃z∀w(w ∈ z ↔ (w ∈ V ∧ (w = x ∨ w = y)))

The condition w ∈ V vanishes as x, y ∈ V .
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Theorem 2.13 (Infinity). ∃V (∅ ∈ V ∧ ∀x ∈ V x ∪ {x} ∈ V ). That is, there exists an
inductive stage (and hence an inductive set).

Proof. Consider ϕ ≡ (∃x (x = ∅) ∧ (∀x∃y y = x ∪ {x})). By Pairs (Theorem 2.12),
for any x the set {x} = {x, x} exists and by Pairs again, {x, {x}} exists. So by Unions
(Theorem 2.9), ∃y y = x ∪ {x}. So ϕ holds (as ∅ ∈ V for all V ). Now, by Reflection,

∃V (ϕ→ (∃x(x ∈ V ∧ x = ∅) ∧ ∀x ∈ V ∃y(y ∈ V ∧ y = x ∪ {x})))

ϕ holds so simplifying the above formula, we get

∃V (∅ ∈ V ∧ ∀x ∈ V x ∪ {x} ∈ V )

Before we can prove Replacement, we need a “stronger” version of Reflection. (As we can
prove it from Reflection alone, it is in fact equivalent.)

Theorem 2.14 (Reflection in n variables).

∀a∃V (a ∈ V ∧ ∀y1, y2, . . . yn ∈ V (ϕ(y1, y2, . . . , yn)↔ ϕV (y1, y2, . . . , yn)))

A full version of Scott’s proof sketch in (1974, p. 213) can be found in Appendix A, but
as it is long and rather technical we skip it here.

Theorem 2.15 (Replacement). For each set a and class function ϕ on a,

∃V ∃w ∈ V w = {y : ∃x ∈ a ϕ(x, y)}

Proof. Suppose ϕ(u, v;x1, . . . , xn) has only the free variables listed. Let

ψ(a, x1, . . . , xn) ≡ ∀x ∈ a∃y ϕ(x, y;x1, . . . , xn)

This holds as ϕ is a class function. Apply strengthened Reflection to a and ϕ ∧ ψ to get

∃V (a ∈ V ∧∀a, x1, . . . , xn, u, v ∈ V ((ϕ(u, v;x1, . . . , xn) ∧ ψ(a, x1, . . . , xn)

↔ (ϕV (u, v;x1, . . . , xn) ∧ ∀x ∈ a∃y ∈ V ϕV (x, y;x1, . . . , xn))))

(since x ∈ a ∈ V , then x ∈ V automatically by Transitivity). Following a very similar
argument to Lévy (1960, Theorem 6), we may split this into

∀x1, . . . , xn, u, v ∈ V (ϕ(u, v;x1, . . . , xn)↔ ϕV (u, v;x1, . . . , xn)) (2.3)

∀x1, . . . , xn ∈ V (ψ(a, x1, . . . , xn)↔ ∀x ∈ a∃y ∈ V ϕV (x, y;x1, . . . , xn)) (2.4)

Since in (2.4) the arguments x, y of ϕ are in V , then we may apply (2.3) to get

∀x1, . . . , xn ∈ V (∀x ∈ a∃y ϕ(x, y;x1, . . . , xn)↔ ∀x ∈ a∃y ∈ V ϕ(x, y;x1, . . . , xn))

Now ψ holds, so we get

∀x1, . . . , xn ∈ V ∀x ∈ a ∃y ∈ V ϕ(x, y;x1, . . . , xn)

By uniqueness of the images of class functions, all y such that ϕ(x, y) for some x ∈ a are
contained in this V . So apply Comprehension on V to get the required set

{y : ∃x ∈ aϕ(x, y)} = {y ∈ V : ∃x ∈ a ϕ(x, y)} ∈ V

10



2.3.2 Derivation of the iterative conception axioms within ZF

For this section we assume ZF instead of Scott’s axioms. We build a class model of the
iterative hierarchy within the universe of sets specified by ZF and show that it satisfies
Scott’s axioms. We then show that, assuming Foundation, this model does actually
include the whole ZF universe (i.e. Restriction holds).

Definition 2.2 (Cumulative Hierarchy). Recursively define V : On→ U (where U is the
universe):

1. V (0) = ∅

2. V (α + 1) = P(V (α))

3. V (λ) =
⋃
α<λ V (α) for λ a limit ordinal

We write Vα for V (α).

This is the counterpart to our previous stages V : we proved that the levels V were well-
ordered, so we may denumerate them by ordinals, if they are already defined. For Scott’s
axiomatisation of stages, we cannot assume ordinals prior to constructing the stages,
but having done so we may note that each stage contains as a subset precisely one new
transitive set well-ordered by ∈. We call these sets ordinals and name each stage V by
the new ordinal α it contains (α ⊂ V ). Hence we may denote it Vα.

Scott’s axiomatisation assumes Extensionality and Comprehension for all sets (indepen-
dent of stages), so we do not need any further derivation.

For the remainder, we need some preliminary properties of the cumulative hierarchy. For
proofs, see Kunen (1980, Chapter III.2).

Definition 2.3. The rank of a set x is the least α such that x ∈ Vα.

Note that rank(x) is always a successor ordinal.

Lemma 2.16. For all α ∈ On, Vα ⊆ Vα+1 and Vα ∈ Vα+1.

Theorem 2.17 (Transitivity of stages). ∀x(x ∈ Vγ ∈ Vβ → x ∈ Vβ). In particular, if
Vδ ∈ Vγ then Vδ ⊆ Vγ.

Lemma 2.18. ∀α, β ∈ On(α < β → Vα ∈ Vβ). Moreover Vα ⊆ Vβ.

Lemma 2.19 (Transitivity). ∀x∃α(x ∈ Vα ↔ x ⊂
⋃
β∈On Vβ).

We may now derive Scott’s axioms.

Theorem 2.20 (Accumulation). ∀Vα∀x(x ∈ Vα ↔ ∃Vβ ∈ Vα(x ∈ Vβ ∨ x ⊆ Vβ)).

Proof. Suppose x ∈ Vα, then in particular α > 0.
Case 1: α = γ+1. Then x ∈ Vα implies x ⊆ Vγ or x ∈ Vγ by construction. Vγ ∈ Vγ+1 = Vα,
so it satisfies the RHS.
Case 2: α = λ for some limit λ. Then ∃β < λ such that x ∈ Vβ and by Lemma 2.18
Vβ ∈ Vλ so Vβ satisfies the RHS.

For the reverse, suppose ∃Vβ ∈ Vα x ∈ V . Then Vβ ⊆ Vα so x ∈ Vβ implies x ∈ Vα.
Suppose instead ∃Vβ ∈ Vα x ⊆ Vβ.
Case 1: α = γ + 1. If β = γ, x ⊆ Vγ. If β < γ, then x ⊆ Vβ ⊆ Vγ by Lemma 2.18 so

11



x ⊆ Vγ. In either case, as Vγ+1 = P(Vγ) we have x ∈ Vγ+1 = Vα.
Case 2: Vα = Vλ for λ a limit ordinal. Let V = Vβ as before. Then as β < λ, also
β + 1 < λ and Vβ+1 ⊆ Vλ. x ⊆ Vβ implies x ∈ Vβ+1 as above, so x ∈ Vβ+1 ⊆ Vλ gives
x ∈ Vλ = Vα.

Lemma 2.21 (Kunen, 1980, Lemma 3.3). If x is transitive and ∈ is well-founded on x,
then ∃α x ∈ Vα.

Proof. By Transitivity it is enough to show x ⊂
⋃
β∈On Vβ. If not, let y = x \

⋃
Vβ, let z

be ∈-minimal in y. If w ∈ z, then w /∈ y, but w ∈ y ∈ x so w ∈ x, so w ∈
⋃
Vβ. Thus

z ⊂
⋃
Vβ so z ∈

⋃
Vβ by Transitivity, contradicting z ∈ x \

⋃
Vβ.

Definition 2.4 (Transitive closure). We define the transitive closure trcl(x) to be the least
transitive set containing x. It is explicitly given by

⋃
{
⋃n x : n ∈ ω} where

⋃0(x) = x
and

⋃n+1(x) =
⋃

(
⋃n(x)).

Theorem 2.22 (Restriction). ∀x∃Vβ(x ⊆ Vβ).

Proof. We modify the proof of Theorem 4.1 in Kunen (1980). Fix x and consider trcl(x).
By Foundation, ∈ is well-founded on trcl(x), so by Lemma 2.21 trcl(x) ∈ Vα for some α.
Further x ⊆ trcl(x) ∈ Vα so x ⊆ trcl(x) ⊆

⋃
β∈On Vβ and x ⊆ Vβ for some β.

In fact we can prove the stronger result ∀x ∃Vβ(x ∈ Vβ), either by adapting the proof just
given or by following the proof using Reflection in Theorem 2.10. This is an important
result – it tells us that the cumulative hierarchy covers the whole universe eventually.
Hence, given ZF, the iterative conception “works”.

Using the following criterion, we prove a theorem known as Lévy’s Reflection Principle.
In fact, the reflection principle Lévy gives in his original 1960 paper is slightly different
(though equivalent). We will use Lévy’s original principle (called N) later in this disser-
tation, but will follow convention in calling this one ‘Lévy’s Reflection Principle’. This
has the Axiom of Reflection as an immediate corollary.

Theorem 2.23 (Tarski-Vaught Criterion). Let A,B be non-empty transitive classes. Sup-
pose ϕ1, . . . , ϕn is a subformula-closed list of formulae in the language of set theory, i.e. ev-
ery subformula of each ϕi also appears in the list. Suppose each ϕi has ni free variables
and we express ϕi without using ∀. The following are equivalent:

1. For each i, ϕi is absolute for A,B. That is,

∀a1, . . . , ani ∈ A (ϕi(a1, . . . , ani)
A ↔ ϕi(a1, . . . , ani)

B)

2. For every formula ϕi(v1, . . . , vni) of the form ∃tϕj(v1, . . . , vni , t) we have

∀a1, . . . , ani ∈ A (∃t ∈ B ϕj(a1, . . . , ani , t)
B → ∃a ∈ A ϕj(a1, . . . , ani , a)B

See Kunen (1980, Lemma 7.3) for a proof.

Theorem 2.24 (Lévy’s Reflection Principle). Suppose W̃ : On→ U satisfies

1. α < β → W (α) ⊆ W (β) for all α, β ∈ On

2. W (λ) =
⋃
α<λW (α) for all limit λ ∈ On

12



Then for W =
⋃
α∈OnW (α) (a class), for all α ∈ On and for any list of formulae

ϕ1, . . . , ϕn, there exists β ∈ On such that α < β and

∀a1, . . . , ani ∈ W (β)ϕWi (a1, . . . , ani)↔ ϕ
W (β)
i (a1, . . . , ani)

Proof. We follow the proof of Kunen (1980, Theorem 7.4). We try to find some β such
that W (β) satisfies the second condition of the Tarski-Vaught Criterion. Without loss of
generality assume the list ϕ1, . . . , ϕn does not contain ∀ and is subformula closed.

For each i such that ϕi is of the form ∃tϕj(v1, . . . , vni , t) define the class function Fi :
W ni → On as follows:

Fi(w1, . . . , wni) =

{
0 ¬∃t ∈ Wϕj(w1, . . . , wni , t)

W

η η is least such that ∃t ∈ W (η) ϕj(w1, . . . , wni , t)
W

Now define Gi : On→ On by

Gi(γ) = max{γ + 1, sup{Fi(w1, . . . , wni) : wk ∈ W (γ)}}

Since W (γ) is a set, by Replacement so is {Fi(w1, . . . , wni) : wk ∈ W (γ)}. Hence its
supremum exists and G is well-defined.

Define βn for n ∈ ω recursively: β0 = max{α, ω}, βn+1 = maxiGi(βn). Observe that
α 6 βn 6 βn+1 so β = supn∈ω βn is a limit cardinal with α < β. We check that
W (β) satisfies the second condition of the Tarski-Vaught Criterion. By construction it
is certainly non-empty and transitive. If ϕi is of the form ∃tϕj(v1, . . . , vni , t) then for
any w1, . . . , wni ∈ W (β) there is n ∈ ω such that w1, . . . , wni ∈ W (βn) since the βn are
increasing and β is a limit. Suppose ϕi(w1, . . . , wni) holds, then Fi(w1, . . . , wni) = η > 0
and there is t ∈ W (η) such that ϕj(w1, . . . , wni , t). Moreover η 6 Gi(βn) 6 βn+1 6 β, so
t ∈ W (β) as required.

Corollary 2.25 (Reflection in n variables).

∀a∃Vβ(a ∈ V ∧ ∀y1, y2, . . . yn ∈ Vβ(ϕ(y1, y2, . . . , yn)↔ ϕVβ(y1, y2, . . . , yn)))

Proof. Clearly our stages Vα satisfy 1. of Lévy’s Reflection Principle by Lemma 2.18 and
2. by definition of Vλ. Further by Restriction ∀x∃α x ∈ Vα. Then ϕW becomes simply ϕ.
Let α = rank(a), then we get (for n = 1, i.e. just one formula ϕ):

∃β ∈ On(a ∈ Vβ ∧ ∀a1, . . . , an ∈ Vβϕ(a1, . . . , an)↔ ϕVβ(a1, . . . , an)

Corollary 2.26 (Reflection). ∃Vβ∀x ∈ Vβ(ϕ(x)→ ϕVβ(x)).

This completes our derivation of the iterative hierarchy axioms from ZF, within the model
of the Vα, which we have showed covers the whole universe provided we assume Founda-
tion. This leaves us free to use either set of axioms in the rest of the dissertation.

2.4 The Axiom of Choice

The axiomatisation above notably does not include the Axiom of Choice. The reader will
no doubt be aware of the long history surrounding the acceptance of the Axiom of Choice,
and we do not intend to discuss whether it is a good or “true” axiom.
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A more interesting question for this dissertation is whether Choice forms a part of the
iterative conception. Essentially, the question is whether choice sets (for a set x, the set
b such that |a ∩ b | = 1 for all a ∈ x) are formed as part of “all possible subsets” in
Accumulation. Boolos (1971) argues that this is circular: such a set is formed if and
only if Choice holds. Hence while Choice may be true, it holds independently of the
iterative conception. Conversely Paseau (2007) presents a “combinatorial” version of
Comprehension (and Accumulation) attributed to Bernays: if we can select any subset
of a set, then it must include the choice set. Along similar lines, Maddy (1988, p. 493)
points out that the Axiom of Choice is thought to “thicken” the power set, and is thus
supported by Maddy’s Maximize. Hence it is part of the iterative conception if we take
the iterative conception to be maximal (as e.g. Wang (1983) does).

It seems to be a matter of personal opinion which of the two arguments is more convincing.
Whether Choice is part of the iterative conception and whether it is “true” or not, we will
henceforth assume that it holds. It is indispensable for much of modern mathematics,
in particular for the theory of cardinals which we will use heavily in this dissertation.
Further, Choice will form a key part in Lévy’s argument concerning inaccessible cardinals
in Section 3.3. This step will be better justified if Choice benefits from the support of the
iterative conception, but will also work if Choice is considered to hold independently.
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Chapter 3

Reflection principles and large
cardinals

3.1 An alternative form of reflection

In this section we will see that Reflection is not only a natural principle but also very
powerful. Lévy (1960, p.234) shows that we may reformulate it as follows. Let S be ZF
minus Infinity and Replacement.

Lévy’s N0. ∃M ScmS(M) ∧ ∀x1, . . . , xn ∈M(ϕ(x1, . . . , xn)↔ ϕM(x1, . . . , xn)).

ScmS(M) abbreviates that M is a standard complete model of S. These were first defined in
Shepherdson (1952) under the name super-complete model ; the naming ‘standard complete
model’ is due to Lévy (1960).1 We use Kruse (1965, p. 97)’s concise modern definition,
except that following Lévy, we will use sets rather than classes.

Definition 3.1. A standard complete model of a theory Σ is a transitive set (M,∈) such
that ΣM holds, that is, all the axioms of Σ hold when relativised to M , and ∈ on M is
the standard relation of ∈ on the universe. We write ScmΣ(M) if this property holds.

Equivalently, if Σ is a set of true sentences (in the universe), a set M is a standard
complete model of Σ if and only if Σ is absolute for M .

The assumption ‘ScmS(M)’ in Lévy’s version of Reflection may seem strong, but in fact
N0 is equivalent to our original Reflection axiom in the presence of the rest of ZF. Further
we will show that any Vλ for λ a limit satisfies ScmS(Vλ) (in particular so does Vω).

Recall that the following notions are ∆0 and hence absolute (for proofs, see Kunen, 1980,
Chapter IV.3).

Lemma 3.1. Let A ⊆ B be any transitive classes. The expressions ‘x = y ∪ z’, ‘x = y+1’
and ‘β is an ordinal’ are absolute for A,B.

1Standard complete models are also closely related to Grothendieck universes (Kruse, 1965), which
are frequently used in modern mathematics. For example, it has been discussed whether Andrew Wiles’
proof of Fermat’s Last Theorem depends on them (McLarty, 2010; Conrad et al., 2010).
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Theorem 3.2. Let λ be a limit cardinal. Then Vλ is a standard complete model of S.

While it is not hard to check the axioms of S as in ZF, we can now make use of our
equivalent iterative conception axioms. These follow very easily as we may remain in the
language of stages. (For Extensionality and Comprehension, we essentially follow Kunen
(1980, pp. 113-114)).

Proof. Extensionality: Suppose x, y ∈ Vλ and x 6= y. By Extensionality in the universe
there is t ∈ x such that t /∈ y or t ∈ y such that t /∈ x. As Vλ is transitive t ∈ Vλ in either
case. So ¬∀t ∈ Vλ (t ∈ x↔ t ∈ y). The converse follows similarly.

Comprehension: We want to show

∀x ∈ Vλ ∃y ∈ Vλ ∀z ∈ Vλ (z ∈ y ↔ (z ∈ x ∧ ϕ(z)Vλ))

Pick x ∈ Vλ non-empty, let α = rank(x). Apply Comprehension in the universe to ϕVλ to
obtain y. For all z ∈ x z ∈ Vα (by Transitivity) so ∀z ∈ y z ∈ Vα so by Accumulation for
y we get y ∈ Vα+1 ⊆ Vλ.

Accumulation:

∀Vα∀x(x ∈ Vα ↔ (∀y ∈ x (y /∈ x) ∨ ∃Vβ ∈ Vα(x ∈ Vβ ∨ x ⊆ Vβ)))

Accumulation is Π1, so downwards absolute, so also holds in Vλ.

Restriction: We want to show ∀x ∈ Vλ∃Vα ∈ Vλx ⊆ Vα. Since λ is a limit cardinal, x ∈ Vλ
implies ∃α < λ x ∈ Vα, so by Transitivity trivially x ⊆ Vα.

Theorem 3.3. Reflection implies N0.

Proof. Recall our “strengthened” (but equivalent) version of Reflection:

∀a∃Vβ(a ∈ Vβ ∧ ∀y1, y2, . . . yn ∈ Vβ(ϕ(y1, y2, . . . , yn)↔ ϕVβ(y1, y2, . . . , yn)))

Take a = ∅ and ψ ≡ (∀x∃y (y = x ∪ {x}) ∧ ϕ(x1, . . . , xn)), and apply Reflection to ψ
to obtain some Vβ. Since ϕ holds in the universe ϕV holds in Vβ. In particular for all
ordinals α < β = Vβ ∩On, we get α ∈ Vβ so α + 1 ∈ Vβ. So β must be a limit cardinal.
Now by Theorem 3.2, β a limit implies ScmS(Vβ).

For the reverse, we would like to show that ScmS(M) implies M is a stage Vλ for some
limit, but without Replacement this is difficult. Instead we proceed via Infinity and
Replacement (following Lévy’s proofs), which we have already shown imply Reflection.

Theorem 3.4 (Infinity). N0 implies ∃y(∅ ∈ y ∧ ∀x ∈ y x ∪ {x} ∈ y).

Proof. Apply N0 for ϕ ≡ ∃x (x = ∅) to get a set M such that ScmS(M). Then M
satisfies Union, Pairs, so x+ = x ∪ {x} exists in M for all x (successors are absolute by
Lemma 3.1). ϕM gives ∃x ∈M (x = ∅), so M is an inductive set.
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Theorem 3.5 (Replacement). N0 implies Replacement.

Proof. It suffices to slightly modify the proof of Replacement from Scott’s Reflection
axiom in Theorem 2.15. The only properties of V we used were that V was transitive and
V satisfied Comprehension. This is true of the set M obtained from N0. What is missing
in N0 is the clause a ∈M for any fixed a. So for a class function ϕ(u, v;x1, . . . , xn) we let

ψ(a, x1, . . . , xn) ≡ ∀x ∈ a ∃y ϕ(x, y;x1, . . . , xn)

as before and apply N0 to (ϕ ∧ ψ ∧ ∃w (w = a)). This relativises to ∃w ∈ V w = a so
a ∈ V . Then proceed exactly as in Theorem 2.15.

So N0 is an equivalent Reflection axiom to our original one, only it contains the statement
that there exists a standard complete model for S. Further it is equivalent to Infinity and
Replacement. Hence the jump from S to ZF, which we are usually happy to make, is
equivalent to assuming that there is a model of ZF which reflects upward and downward
with respect to the universe.

3.2 Large cardinals

The first historic breakthrough in set theory was Cantor’s definition of ω. Not only do
the natural numbers go on to infinity, but there exists a cardinal beyond them we cannot
reach by our usual operations of plus, times and exponentiation (equivalently, Pairs,
Unions and Power Set) applied to the natural numbers. If the stages should go on and
on, one might argue, should there not be cardinals which are bigger than all the ordinals
we can obtain by the methods ZFC provides? Supposing they exist, such cardinals are
called inaccessible.

Inaccessible cardinals and other large cardinals play an important role in the modern
study of set theory. In fact, inaccessible cardinals are the smallest in a hierarchy of ever-
increasing cardinals – with each successive cardinal being so much larger that there are
many cardinals of previous sort below it. (The sense of “many” depends on the precise
type of large cardinal, as does the meaning of “large” (Kanamori, 2009, p. XXI)). All large
cardinals offer increases in consistency strength over ZFC – in particular, their existence
cannot be proved in ZFC due to Gödel’s Incompleteness Theorems.

Besides establishing inner models of (parts of) set theory, large cardinals also establish
properties of the real line, notably of perfect, Borel and analytic sets (known as descrip-
tive set theory). They have applications in the theories of determinacy and infinitary
combinatorics. Further they allow for solutions of new Diophantine equations (see e.g.
Gödel, 1983, p. 477).

The existence of large cardinals gains support from Maximise as well as from the useful-
ness of their consequences. Kanamori and Magidor (1977, p. 103) argue that assuming
large cardinals is similar to assuming the Axiom of Infinity (i.e. the existence of ω). We
will show in this dissertation that α-inaccessible and α-Mahlo cardinals are also supported
by Reflection by linking them to standard complete models of ZF.
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The modern definition of inaccessible does not immediately relate to the idea of being
“unreachable”.

Definition 3.2. An infinite cardinal κ is regular if there exists no ordinal θ < κ and
function f : θ → κ such that sup ran f = κ. (Kunen (1980, p. 33) shows we may assume
f is increasing.)
An infinite cardinal that is not regular is called singular.

For example, ω is regular, each successor cardinal ℵα+1 is regular, but ℵω is not as it is
the limit of ℵn for n ∈ ω. (For detailed proofs, see Hrbacek and Jech (1999, pp. 161-162)).

Are there regular limit cardinals beyond ω? As we see with ℵω, regular limit cardinals
are not so easily found. In fact, it is not possible to prove that uncountable regular
limit cardinals exist. (This will follow from Gödel’s Incompleteness Theorems applied to
Section 3.3 below.)

Definition 3.3. A weakly inaccessible cardinal is a regular uncountable limit cardinal.

Definition 3.4. A strongly inaccessible cardinal is a regular uncountable strong limit
cardinal κ, i.e. it is regular, uncountable and 2λ < κ for all λ < κ.

We focus on strongly inaccessible cardinals, and following the usual trend refer to them
simply as inaccessible. We proceed to define a hierarchy of them (modifying Kanamori’s
version for weak inaccessibles).

Definition 3.5. A 0-strongly inaccessible cardinal is a regular cardinal.
An (α+1)-strongly inaccessible cardinal is a regular strong limit of α-strongly inaccessible
cardinals, i.e. it is regular, a strong limit cardinal and a limit of α-strongly inaccessible
cardinals.
A λ-strongly inaccessible cardinal (for λ a limit) is an α-strongly inaccessible cardinal for
every α < λ.

Note 1-inaccessibles are our original inaccessible cardinal: any strongly inaccessible car-
dinal is a limit cardinal and hence the limit of all successor cardinals before it, which are
regular. In fact, we can condense the last two conditions to say κ is α-strongly inaccessible
if it is regular and the limit of β-strongly inaccessible cardinals for each β < α:

Lemma 3.6. Let κ be an α-strongly inaccessible cardinal, then κ is β-strongly inaccessible
for all β 6 α. Hence if κ′ is the limit of α-strongly inaccessible cardinals, it is the limit
of β-strongly inaccessible cardinals for all β 6 α.

Proof. By induction. α = 0 is vacuously true. If α is a limit, it is precisely the definition.
Suppose α = α′ + 1. Then κ is the limit of α′-inaccessible cardinals, say {µγ}γ<κ (as κ is
regular, the length of the sequence must be κ). Each µγ is β-inaccessible for all β 6 α′

by inductive hypothesis, so κ is β + 1-inaccessible for all β + 1 6 α′ + 1. Further κ is
0-strongly inaccessible as it is regular.

We next discuss the model theory which gives inaccessible cardinals their name.
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3.3 A similar step?

Consider now the following axiom schema:

Lévy’s N . ∃M(ScmZF(M) ∧ ∀x1, . . . , xn ∈ u(ϕ(x1, . . . , xn)↔ ϕM(x1, . . . , xn))).

Supposing ZF, now, we claim that there is a model of ZF which reflects upward and
downward. Lévy argues that taking the step from ZF to ZF + N (ZN) is very similar to
taking the step from S to ZF. That is,

“we can view [the axiom schema N ] as [a] natural continuation of the axioms
of infinity and replacement... it seems likely that if in the sequence S, ZF,
[ZN] , ... no inconsistency is introduced in the first step, from S to ZF, also
no inconsistency is introduced in the further steps.” (Lévy, 1960, p. 234)

Lévy then states that N is equivalent to the following axiom, referring to a result by
Shepherdson (1952) that ScmZF(M) holds iff M = Vκ for some inaccessible κ.

Lévy’s N ′′′. ∃α(In(α)∧∀x1, . . . , xn ∈ Vα(ϕ(x1, . . . , xn)↔ ϕVα(x1, . . . , xn))), where In(α)
abbreviates ‘α is inaccessible’.

Note that the α depends on the formula ϕ. There are countably many formulas, so N
assumes the existence of at most countably many inaccessible cardinals α. Compared to
the number of ordinals, ‘countably many’ is vanishingly small.

However, the equivalence of these two axioms – on which Lévy bases the remainder of his
argument – in fact requires rather strong assumptions. The backwards direction may be
proved within ZFC, following Kanamori (2009). We present full versions of Kanamori’s
(rather brief) proofs.

Lemma 3.7 (Kanamori, 2009, Proposition 1.2a). Let κ be an inaccessible cardinal. If
x ⊆ Vκ, then x ∈ Vκ if and only if |x| < κ.

Proof. We prove by induction on α that |Vα| < κ for α < κ. Then since x ∈ Vκ → x ⊆ Vα
for some α < κ we have |x| 6 |Vα| < κ.
Base case α = 0: |Vα| = |{∅}| = 1 < κ .
α+ 1: |Vα+1| = |P(Vα)| = 2|Vα| < κ as |Vα| < κ by inductive hypothesis, and κ is a strong
limit.
λ a limit: |Vλ| =

∣∣⋃
α<λ Vα

∣∣. For each α < λ |Vα| < κ by inductive hypothesis, so there
is an injection fα : Vα → κ. Hence there is also an injection from

⋃
α<λ Vα to λ × κ by

x 7→ (α, fα(x)) for α = rank(x). But |λ× κ| = λ · κ = κ as λ < κ, so
∣∣⋃

α<λ Vα
∣∣ < κ.

Now suppose x ⊆ Vκ with |x| < κ and consider f : x → On given by y 7→ rank(y). By
Replacement, f is a surjection onto the set ran f ⊆ On. By Choice (Cardinal Compara-
bility), we have |ran f | 6 |x| < κ.

By Theorem 3.2, any Vλ for λ a limit is a model of S, so in particular for κ inaccessible.
It remains (continuing with Scott’s axiomatisation) to show Reflection.
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Theorem 3.8. Let κ be a (strongly) inaccessible cardinal. Then Vκ is a standard complete
model of ZF.

Proof. We want to show

∃Vα ∈ Vκ∀x ∈ Vα(ϕ(x)→ ϕVα(x))

We may follow the same proof as when we proved Lévy’s Reflection Principle (Theo-
rem 2.24), only we replace the use of Replacement by Lemma 3.7.

For each i such that ϕi is of the form ∃t ϕj(v1, . . . , vni , t) define Fi : V ni
κ → κ as in

Theorem 2.24, replacing W with Vκ.

Fi(v1, . . . , vni) =

{
0 ¬∃t ∈ Vκ ϕj(w1, . . . , wni , t)

Vκ

η η < κ is least such that ∃t ∈ Vη ϕj(w1, . . . , wni , t)
Vκ

This is well-defined as κ is a limit cardinal.
As we are working in Vκ, On becomes On∩ Vκ = κ. So Gi becomes Gi : κ→ κ, given by

Gi(γ) = max{γ + 1, sup{Fi(v1, . . . , vni) : vk ∈ Vγ}}

We need to check sup{Fi(v1, . . . , vni) : vk ∈ Vγ} ∈ Vκ so that Gi is well-defined. We have
Fi(v1, . . . , vn) ∈ κ so certainly Fi|V niγ ⊆ κ. Further∣∣∣Fi|V niγ ∣∣∣ 6 ∣∣V ni

γ

∣∣ = ni · |Vγ| < ni · κ = κ

by Lemma 3.7 as γ < κ so Vγ ∈ Vκ. By Lemma 3.7 Fi|V niγ ∈ Vκ. Now, if
∣∣∣Fi|V niγ ∣∣∣ is a

successor cardinal, the set of ordinals Fi|V niγ has maximum < κ since κ is a limit. If it is

a limit ordinal, then it gives a sequence of length
∣∣∣Fi|V niγ ∣∣∣ of ordinals in κ, so supFi|V niγ

must be less than κ by regularity of κ, so in Vκ.

Now define the sequence βn+1 = maxiGi(βn) and β = sup βn as in the original proof. As
all the βn are values of Gi, so (βn) is a sequence of length ω < κ of ordinals < κ, so by
regularity as in the previous argument β = sup βn < κ. So Vβ satisfies the condition of
the Tarski-Vaught criterion as required.

We can even show that Choice holds in Vκ (reverting to ZFC).

Theorem 3.9. Let κ be an inaccessible cardinal. Then Vκ satisfies AC.

Proof. f is a choice function for x if

f ∈ P(P(x) \ {∅} × x) ∧ fun(f) ∧ ∀a ∈ P(x) \ {∅} (f(a) ∈ a)

where a × b abbreviates {{{u}, {u, v}} : u ∈ a, v ∈ b} and fun(f) abbreviates ‘f is a
function’, i.e.

∀x ∈ P(x) ∀u ∈ x ∀v ∈ x (f(t) = u ∧ f(t) = v → u = v))

The proofs above imply that Vκ satisfies Power Set, Union and Pairs, further all relevant
notions are absolute. Hence being a choice function for x is absolute (the remaining parts
are all ∆0), so since Choice holds in the universe it also holds for all x ∈ Vκ.
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The reverse direction, however, cannot be proved in first-order logic: suppose we have
a standard complete model M of ZF which satisfies (ϕ ↔ ϕM) for some ϕ. Then by a
modified version of the Downward Löwenheim-Skolem Theorem2 there exists a transitive
model (M ′,∈) of ZF plus reflection on ϕ with the standard ∈ relation which is countable.
So it cannot possibly be a Vκ for κ inaccessible. In fact, since cardinals are not abso-
lute, then without further conditions M (even with reflection) can say nothing about the
existence of (inaccessible) cardinals in the universe at all.

This reflects the general issue that we cannot prove the categoricity of infinite theories in
first-order logic. Instead, as for arithmetic and real analysis (see Shapiro, 1991), we resort
to second-order logic.

The proof will proceed in two stages: first we show that M is of the form Vκ, then that
κ is inaccessible.

Lemma 3.10. If M is a standard complete model of ZF and F is an absolute class
function defined on a set y, then x =

⋃
z∈y F (z) is absolute for M .

Proof. By Replacement in M , the collection A = {F (z) : z ∈ y} is a set in M . The
formula ‘x =

⋃
A’ is ∆0 so absolute.

Lemma 3.11. If M is a standard complete model of ZF and the notion ‘y = P(x)’ is
absolute for M then ‘x = Vα’ (for some x and ordinal α) is absolute for M .

Proof. By transfinite induction on α.

α = 0: ‘x = V0 = ∅’ is ∆0 so absolute.
α = β + 1: x = Vβ+1 becomes x = P(Vβ) ∪ Vβ. By assumption and the Lemmas in
Section 3.1 x = P(Vβ) ∪ Vβ is absolute. Moreover the notion of ‘β + 1’ is absolute as
ordinals and successors are absolute.
α = λ for λ a limit: x = Vλ becomes x =

⋃
β<λ Vβ which is absolute by Lemma 3.10.

Theorem 3.12. Let M be a standard complete model of ZFC such that ‘y = P(x)’ is
absolute for M . Then M = Vκ for some ordinal κ.

Proof. Recall M is a set, so κ := sup(On ∩M) exists. κ must be a limit ordinal since
by Pairs and Unions in M , α + 1 ∈ On ∩M for all α ∈ On ∩M . We want to showthat
M = Vκ.

By Lemma 3.11, the notion of stages is absolute for M and M satisfies the axioms required
to build them. Hence for all β ∈ On ∩M , i.e. for all β < κ, we must have Vβ ∈ M . So⋃
β<κ Vβ ⊆ M . Suppose x ∈ M \

⋃
β<κ Vβ. We know x+ is absolute by Lemma 3.1 and

since Union and Pairs hold in M , x+ ∈M . Define the class function F : y 7→ rank(y) for
y ∈ x. As y ∈ x, rank(y) < rank(x) < κ so F is well-defined in M . Then by Replacement
(in M) applied to F and x+, z = {f(y) : y ∈ x+} is a set of ordinals in M . Hence
rank(x) ∈ z ∈M and z ∈ On ∩M gives z ⊂ κ so rank(x) ∈ κ so x ∈ Vβ for some β < κ,
contradiction. So

⋃
β<κ Vβ = M .

When is ‘y = P(x)’ absolute? It need not be – for example it is absolute for Vλ for λ
a limit by construction of stages, but not for Gödel’s constructible stages Lλ (unless we

2In order for M ′ to be a standard complete model, it must be transitive and preserve ∈. This is not
guaranteed by the standard version of the theorem.
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assume V = L). Certainly full second-order logic suffices, as then ∀z ⊆ x(z ∈ y) is a
bounded quantification over subsets (the other direction is ∆0 so absolute even in first-
order logic). By definition of second-order quantification, M and the universe must agree
on ∀z ⊆ x (assuming M is transitive).3 The author has not been able to find discussions
on precisely how much second-order logic is needed – the dominant position seems to
be simply accepting that power sets are not absolute. The link between power sets and
second-order logic in general is treated in Jané (2005).

For the second step, Kanamori (2009, p. 19) reduces the need for second-order logic to
the assumption of second-order Replacement and that M satisfies Choice (which holds if
M is an inaccessible stage Vκ by Theorem 3.9).

Definition 3.6 (Second-order Replacement).

∀F ∀x (∀r((F (r, s) ∧ F (r, t))→ s = t)→ ∃y∀w(w ∈ y ↔ ∃v(v ∈ x ∧ F (v, w))))

If M is of the form Vα for some α, ∀F relativises to ∀F ⊂ Vα × Vα. If x, y ∈ Vα then
{x}, {x, y} ∈ Vα+1 so 〈x, y〉 ∈ Vα+2. Hence F ⊆ Vα+2, so F ∈ Vα+3. So we may replace the
second-order quantification in Vα by first-order quantification in Vα+3. It seems unlikely
that we would accept the existence of some Vα but not of Vα+3.

Theorem 3.13. Let Vκ be a standard complete model of ZFC + second-order Replace-
ment. Then κ is an inaccessible cardinal.

Proof. κ is a regular cardinal: Suppose not, then we have a function f : β → κ such that
{f(γ) : γ ∈ β} = κ /∈M , so M does not satisfy second-order Replacement, contradiction.
(Crucially, Replacement must be second-order in order to make sure it covers this f .
Otherwise f might not be definable in M by any formula ϕ – it might depend on sets M
does not “know” about – but it is always a subset of M .)
κ is a strong limit: Suppose not, then there is a cardinal λ < κ st. 2λ > κ (using
Cardinal Comparability, i.e. Choice, in M). That is, we have a surjection g : P(λ) → κ.
P(λ) ∈ Vκ since Power Set holds in Vκ. So by second-order Replacement, ran g = κ ∈ Vκ,
contradiction.

However, Lévy’s similarity argument relies on M being a model of ZF alone, not of ZFC.

Lévy cites an older proof by Shepherdson (1952) that ScmZF(M)⇔ ∃κ M = Vκ for κ inac-
cessible. Shepherdson’s paper is couched in full second-order logic and moreover assumes
Global Choice in the universe in order to prove this theorem. The precise assumptions
required are Global Choice and that the following notions are absolute:

1. ‘f is a function on an ordinal α’

2. The range of a function (on an ordinal)

3. (Infinite) unions

4. Cardinality of sets

5. Power sets of cardinals

3Lévy refers to Shepherdson (1952), who refers to Shepherdson (1951) for this result. However there
either is a typographical error in Shepherdson’s paper or this result is missing, as there is no such
proposition ‘2.236’.
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Absoluteness of cardinals in particular cannot follow from first-order logic due to the
Löwenheim-Skolem Theorems. (It would be an interesting question for further research
to determine precisely how much second-order logic is needed for Shepherdson’s proof,
and whether Global Choice is strictly necessary.)

In light of these assumptions, recall Lévy’s original claim: that N and N ′′′ are natural
continuations of N0, i.e. the assumption of Infinity and Replacement. While this may be
true of N , it cannot said lightly of N ′′′, since N ′′′ requires not only a standard complete
model of ZF (as N0 did of S) but also significant portions of second-order logic and some
form of Choice. We even need Choice to show N from N ′′′ (in Lemma 3.7).

Lévy avoids this in part by redefining the notion of ‘inaccessible’ at the start of his paper
to a weaker form which can be proved from N without Choice. In his introduction, he
also sets out his system as “non-simple applied first-order functional calculus” (p. 223)
– that is, he allows functions as variables, which range over “all subsets of the universe
set of the model” (p. 224). His version of Replacement (misleadingly) appears first-order,
as Lévy only builds the quantification over all functions into his definition of standard
complete model (“in the sense of Henkin”) some paragraphs later.4

While technically correct, these (re-)definitions obfuscate what Lévy actually proves. He
refers often to inaccessible cardinals and to ZF, yet his definition of ‘ZF’ is much stronger
than what modern mathematicians assume, while his definition of ‘inaccessible’ is weaker.
His assertion that the step to N ′′′ is a natural continuation of the step from S to ZF relies
on ZF being second-order already.

It is questionable whether second-order Replacement is as intuitive as the first-order
Replacement and Infinity commonly assumed in ZF. Quine (1986, pp. 64-68) famously
highlights the difficulties of second-order logic regarding lack of completeness, ontological
commitment, and overlap with set theory.5 Further, soundness of second-order logic only
follows given suitable semantics. While counterarguments to the first two points can be
found in Boolos (1975) and Shapiro (1991) provides a highly detailed analysis and rebuttal
of all four, the issue remains a delicate one and needs to be treated with some caution.6

None of this falsifies Lévy’s mathematics, but it casts serious doubt on Lévy’s assertion
that assuming N ′′′ is so similar to N0 and “as unlikely to introduce inconsistency” (p. 234).
Reviewers of Lévy’s paper seem to have focused (as best as the author can determine)
on the mathematical content of his paper rather than critiquing his more philosophical
assertions.

In the remainder of the paper, we give some results that follow from the assumption of
N ′′′ and strengthenings thereof. These are intended to motivate further research to fill
the gaps in Lévy’s justification of N ′′′.

4For a discussion of Henkin semantics, see Shapiro (1991).
5For example, we can write down a second-order sentence that holds if and only if the Continuum

Hypothesis is true, and moreover this sentence is absolute between transitive models.
6Shapiro also argues that our modern fixation on first-order logic is merely a remnant of Hilbert’s

foundationalist programmes which have been shown to fail. Whether this is indeed justified and whether
it applies to the topics of this dissertation could be the subject of further research.
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3.4 A stronger result

A highlight of Lévy’s paper is his proof that N ′′′ suffices for the existence of unbounded
α-inaccessible cardinals. That is, to show their existence we need “just” countably many
inaccessible cardinals satisfying Reflection.

Definition 3.7. A normal function is a class function F : On → On (or a function
f : A → B for A,B ⊂ On) which is strictly increasing, i.e. α < β → F (α) < F (β), and
continuous, i.e. for limit λ, F (λ) = supβ<λ F (β).

Lemma 3.14. For every normal function F defined for all ordinals, F (α) > α.

Proof. By transfinite induction. F (0) > 0 is clear. F (α + 1) > F (α) > α by inductive
hypothesis so F (α + 1) > α + 1. For λ a limit, F (λ) = supβ<λ F (β) > F (β) > β for all
β < λ, so F (λ) > supβ<λ β = λ.

Lemma 3.15. Every normal function F has arbitrarily large fixed points.

Proof. Fix α ∈ On and construct the following sequence: For n ∈ ω, let β0 = α, βn+1 =
F (βn). Let β = supn∈ω βn. We have β > α and F (β) = F (supn∈ω βn) = supn∈ω F (βn) =
supn∈ω βn+1 = β (as β is a limit ordinal). Hence β is a fixed point larger than our arbitrary
α.

We use normal functions to enumerate the α-inaccessible cardinals. Let Pα(0) be the
first α-inaccessible cardinal, supposing it exists, let Pα(ξ + 1) be the first α-inaccessible
cardinal greater than Pα(ξ), supposing it exists, and to get continuity we define Pα(λ) =
supξ<λ Pα(ξ) for λ a limit (note Pα(λ) need not be α-inaccessible itself). We do not yet
suppose that Pα is defined on all ordinals or for all α, we will show this later.

Consider the following statement:

Lévy’s M . Every normal function defined for all ordinals has at least one inaccessible
cardinal in its range.

Theorem 3.16 (Lévy, 1960, Theorem 1). Let F be a normal function defined for all
ordinals. The following are equivalent:

M : F has at least one inaccessible cardinal in its range.

M ′: F has at least one fixed point which is inaccessible.

M ′′: F has arbitrarily great fixed points which are inaccessible.

Proof. Clearly M ′′ ⇒M ′ ⇒M . We will prove M ⇒M ′′.
Let F be a normal function defined for all ordinals. Let G be the normal function
enumerating its fixed points, i.e. G(0) is the least β st. F (β) = β, G(α + 1) is the least
β > G(α) such that F (β) = β, and G(λ) = supβ<λ F (β) (for λ a limit). By Lemma 3.15,
G is also defined for all ordinals Fix any λ, define Hγ(ξ) = G(γ + ξ). Hγ is also a
normal function defined for all ordinals (as G is), so by M there is an ordinal such that
β = Hγ(ξ) is inaccessible. β = G(γ+ ξ) so by definition of G F (β) = β. By Lemma 3.14,
β > γ + ξ > γ.
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In particular, M implies that there are arbitrarily large inaccessible cardinals, i.e. the
class of inaccessible cardinals is unbounded. Lévy shows7 that we can prove M from N ′′′.

Theorem 3.17 (Lévy, 1960, Theorem 3). N ′′′ implies M .

Proof. Let ϕ(x, y, v1, . . . , vn) be a formula. Let χ(v1, . . . , vn) be the formula asserting that
if ϕ(ξ, η, v1, . . . , vn) gives a normal function η = F (ξ) defined for all ordinals then F has
at least one inaccessible cardinal in its range. (That is, χ is equivalent to the statement
that M holds for this ϕ.) Let ρ(v1, . . . , vn) be the formula asserting that F is a normal
function. Consider now Φ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4, where

ϕ1 ≡ ϕ

ϕ2 ≡ ∀ξ∃ηϕ(ξ, η) ∧ ρ
ϕ3 ≡ χ

ϕ4 ≡ ∀v1, . . . , vnχ

That is, ϕ2 states that ϕ is defined for all ordinals. We now apply N ′′′ to Φ to get (as
relativisation passes through ∧) that there exists some inaccessible α such that:

v1, . . . , vn ∈ Vα → (ϕ↔ ϕVα) (3.1)

v1, . . . , vn ∈ Vα → ((∀ξ∃η ϕ(ξ, η) ∧ ρ)↔ (∀ξ < α∃η < α ϕ(ξ, η)Vα ∧ ρVα)) (3.2)

v1, . . . , vn ∈ Vα → (χ↔ χVα) (3.3)

(∀v1, . . . , vn χ)↔ (∀v1, . . . , vn ∈ Vα χVα) (3.4)

To prove M , we assume that for some v1, . . . , vn ∈ Vα, ϕ(ξ, η) gives a normal function
defined for all ordinals (In the other cases M is vacuously true.) Since we have assumed
the left hand side of (3.2), we get

∀ξ < α ∃η < α ϕ(ξ, η)Vα

By (3.1), ϕ holds iff its relativisation holds, so we have

∀ξ < α ∃η < α ϕ(ξ, η)

We claim F (α) = α. To see this, consider β < α. By (3.2) F (β) ∈ Vα i.e. F (β) < α. α is
a limit so F (α) = supβ<α F (β) 6 α. But F (α) > α so F (α) = α.
So F has at least one inaccessible cardinal in its range. This proves v1, . . . , vn ∈ Vα → χ
so by (3.3) we have v1, . . . , vn ∈ Vα → χVα which is equivalent to (∀v1, . . . , vnχ)Vα . By
(3.4) this is equivalent to ∀v1, . . . , vnχ, thus proving M .

In fact, Lévy shows that we can prove the existence of unbounded α-inaccessible cardinals
– a much stronger result. For part of the argument, Lévy refers his reader to Mahlo’s orig-
inal paper Über lineare transfinite Mengen (1911). We offer a combined (and translated)
version of the two proofs here, and add the case for ξ = 0 which Lévy omits.

Rephrasing the definition of (α + 1)-inaccessible cardinals gives:

Lemma 3.18. The limit of a sequence of α-inaccessible cardinals of length γ, where γ is
regular, is either an (α + 1)-inaccessible cardinal or not even a regular cardinal.

7In fact, he shows M and N ′′′ are equivalent
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Recall we defined Pα(ξ) to be the normal function enumerating (in increasing order) the
α-inaccessible cardinals, insofar as they are defined.

Theorem 3.19 (Lévy, 1960, Theorem 4). Assuming M , then Pα(ξ) is defined for all α, ξ.
In other words, the α-inaccessible cardinals are unbounded for each α ∈ On.

Proof. Let α be the least ordinal such that Pα is not defined for all ordinals and let ξ be
the least ordinal for which Pα(ξ) is not defined. ξ cannot be a limit as otherwise we could
define Pα(ξ) := supη<ξ Pα(η). Moreover α > 0: for all β there is some successor cardinal
greater than β and all successors are regular, so P0(ξ) is defined for all ordinals.

Case 1: α = 1, i.e. Pα enumerates the inaccessible cardinals. By M there exists an
inaccessible cardinal so ξ > 0. Since ξ is not a limit, write ξ = ξ′ + 1. Let β = P1(ξ′).
Define F (0) to be the least regular cardinal > β, which is P0(γ) for some γ, and let F (η)
enumerate the regular cardinals > β, i.e. F (η) = P0(γ + η). Since P0 is defined for all
ordinals by the above, so is F . By M it has an inaccessible cardinal in its range, but
F (η) > β for all η, contradiction as β = P1(x′) was the greatest inaccessible cardinal.

Case 2: α > 1 is a successor ordinal. If ξ = 0, let β = 0, else write ξ = ξ′ + 1 and let
β = Pα(ξ′). Since α = α′ + 1 is least, Pα′(η) is defined for all η. Define F (0) to be the
least α′-inaccessible cardinal > β, which is Pα′(γ) for some γ, and let F (η) enumerate
the α′-inaccessible cardinals > β, i.e. F (η) = Pα′(γ + η). Since Pα′ is defined for all
ordinals so is F . By M ′, F must have an inaccessible fixed point, i.e. some inaccessible
F (µ) = µ. As µ is inaccessible, µ is also a limit. By Lemma 3.18, F (µ) = supλ<µ F (λ)
is either α-inaccessible or not even a regular cardinal. However F (λ) > β = Pα(ξ′) for
all λ so since Pα(ξ′) is the greatest α-inaccessible cardinal (or β = 0 and there are no
α-inaccessibles), F (µ) cannot be α-inaccessible. Hence F (µ) = µ is not regular, so not
inaccessible, contradiction.

Case 3: α > 1 is a limit ordinal. As in the previous case, if ξ = 0, let β = 0, else write
ξ = ξ′ + 1 and let β = Pα(ξ′). Define γεµ for ε < α and µ ∈ On as follows: Let γ00

be the least regular cardinal > β, let γεµ be the least ε-inaccessible cardinal such that
γεµ > γε′µ′ > β for all ε′ < ε, µ′ < µ.

γ00 γ10 . . . γε0 . . .
γ01 γ11 . . . γε1 . . .
...

...
. . .

...
γ0µ γ1µ . . . γεµ . . .
...

...
...

Let G enumerate the γεµ starting first with the γε0 (for ε < α), then the γε1 and so forth
through all the µ ∈ On. By M ′, G must have an inaccessible fixed point G(ν) = ν, where
ν is a limit ordinal. Consider G(ν) = supλ<ν G(λ). Suppose ν 6= κ · α for some κ. Then
G(ν) is the limit of the sequence

γ00 . . . γε0 . . . γ01 . . . γε1 . . . γ0µ . . . γε′µ

for some µ, ε′ such that µ · α + ε′ = ν. Equivalently, G(ν) is the limit of the “last row”
γ0µ . . . γε′µ of length ε′ < α. Moreover G(ν) > γ00 > β > α, so G(ν) is the limit of less
than α cardinals < α, so cannot be regular, let alone inaccessible, contradiction.
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Suppose instead ν = κ · α for some κ. Each γεµ is ε-inaccessible, so for each ε < α,
G(ν) is the limit of κ many ε-inaccessible cardinals (the “columns”). Hence since G(ν)
is inaccessible then G(ν) is α-inaccessible by definition, but G(ν) > β, contradiction,
as either β = Pα(ξ′) was the greatest α-inaccessible cardinal or if β = 0 there were no
α-inaccessible cardinals.

3.5 A hierarchy of reflection principles

In our definition of N we introduced cardinals which were inaccessible with respect to
ZF. What about cardinals which are inaccessible with respect to ZN? Such cardinals are
called Mahlo cardinals. As for inaccessible cardinals, we state the modern definition and
show it gives inaccessibility from ZN.

Definition 3.8. Let κ be a regular uncountable cardinal. A set C is unbounded in κ if
supC = κ. A set C ⊆ κ is closed if for all γ < κ such that C ∩ γ is unbounded in γ,
γ ∈ C.

We may think of closed unbounded sets as being “large” or having (probabilistic) “measure
1”.8

Definition 3.9. Let κ be a regular uncountable cardinal. A set S is stationary (in κ) if
for all closed unbounded sets C ⊆ κ, S ∩ C is nonempty.

We may think of stationary sets as having “non-zero measure”.

Definition 3.10. A weakly Mahlo cardinal κ is a regular uncountable cardinal such that
the set of regular cardinals < κ is stationary in κ.
A strongly Mahlo cardinal κ is a weakly Mahlo and strongly inaccessible cardinal.

As we focused on strongly inaccessible cardinals, we focus on strongly Mahlo cardinals.
We follow Kanamori (2009, p. 17) in building up a hierarchy of them, modifying his
0-weakly Mahlo cardinals to make 0-strongly Mahlo cardinals inaccessible rather than
simply regular.

Definition 3.11. A 0-strongly Mahlo cardinal is a strongly inaccessible cardinal.
An (α+ 1)-strongly Mahlo cardinal is a strongly inaccessible cardinal κ such that the set
of α-strongly Mahlo cardinals < κ is stationary in κ.
A λ-strongly Mahlo cardinal (for λ a limit) is an α-strongly Mahlo cardinal for all α < λ.

As for inaccessible cardinals, we henceforth omit ‘strongly’. Again we can prove that if
κ is α-strongly Mahlo then it is β-strongly Mahlo for all β < α. So we can condense the
successor and the limit case to say that κ is α-strongly Mahlo iff the set of β-strongly
Mahlo cardinals is stationary in κ for all β < α.

Kanamori (2009, Proposition 1.1) shows that for α > 0, every α-strongly Mahlo cardinal
κ is κ-inaccessible. This confirms why we consider Mahlo cardinals to be “larger” than
inaccessible cardinals, in addition to there being “many” inaccessible cardinals below each
Mahlo cardinal (expressed by them being stationary).

8For example, the intersection of closed unbounded sets is closed unbounded, similar to measure 1
sets.
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Lévy and Mahlo use a different definition of Mahlo cardinals, in line with axiom M .

Definition 3.12 (Lévy, 1960, p. 233). A 1-strongly Mahlo cardinal is an inaccessible
cardinal κ such that each normal function f : κ→ κ has at least one inaccessible cardinal
in its range. An (α + 1)-strongly Mahlo cardinal is an inaccessible cardinal κ such that
each normal function f : κ→ κ has at least one α-strongly Mahlo cardinal in its range.
A λ-strongly Mahlo cardinal (for λ a limit) is an α-strongly Mahlo cardinal for all α < λ.

We prove that these two definitions are equivalent for α > 0 by the following well-known
conversion.

Lemma 3.20 (Equivalence of closed unbounded sets and normal functions). Let κ be an
uncountable regular cardinal.

1. If f : κ→ κ is a normal function then ran f is closed unbounded in κ.

2. If C ⊆ κ is closed unbounded in κ then the function f : α 7→ (αth element of C) is
normal, moreover f is a function from κ to κ.

Lemma 3.21. κ is α-strongly Mahlo for α > 0 (by our original definition) iff κ is an
inaccessible cardinal such that each normal function f : κ→ κ has at least one β-strongly
Mahlo cardinal in its range for each β < α.

Proof. κ is (α+ 1)-strongly Mahlo iff it is inaccessible and the set S of α-strongly Mahlo
cardinals is stationary in κ. Let f : κ→ κ be any normal function. Then ran f is closed
unbounded in κ, so ran f ∩ S 6= ∅.
Conversely suppose every normal function on κ has at least one α-strongly Mahlo cardinal
in its range. Consider a closed unbounded set C ⊆ κ. By the previous Lemma obtain a
normal function f : κ→ C, by assumption this has an α-inaccessible cardinal in its range
C. So C ∩ S 6= ∅.
If α is a limit, pick β < α. By definition κ is (β + 1)-strongly Mahlo so each normal
function has at least one β-strongly Mahlo cardinal in its range.

Using these definitions, Lévy (1960, p. 233) defines the axiom schemata NΛ and N ′′′
Λ for

any definable9 ordinal Λ > 0 as follows.

Lévy’s N ′′′
Λ . ∀µ < Λ∃κ(κ is µ-Mahlo ∧ ∀x1, . . . , xn ∈ Vκ(ϕ↔ ϕVκ)).

For Λ′ = Λ + 1 a successor ordinal, this is equivalent to

Lévy’s N ′′′
Λ+1. ∃κ(κ is Λ-Mahlo ∧ ∀x1, . . . , xn ∈ Vκ(ϕ↔ ϕVκ)).

since Λ-strongly Mahlo implies µ-strongly Mahlo for all µ 6 Λ. Hence for Λ = 1, this is
equivalent to our original N as µ < 1 means κ is 0-strongly Mahlo, i.e. inaccessible.

We can also consider

Lévy’s MΛ. Every normal function defined for all ordinals has for every µ < Λ at least
one µ-Mahlo cardinal in its range.

Again M1 is our original M . Further by extending Lemma 3.20 and the definitions
of stationary sets to classes, MΛ can be written as “The class of µ-Mahlo cardinals is

9If we take ‘definable’ as recursively definable, then Λ is bounded above by the Church-Kleene ordinal
ωCK
1 , and hence countable. (This comment is due to Robert Leek.) In any case we assume that the

existence of Λ is provable in ZF to avoid technicalities.
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(definably) stationary in On for all µ < Λ”, i.e. every definable closed unbounded class
of ordinals contains a µ-Mahlo cardinal (Kanamori, 2006).

Let ZMµ = ZF +Mµ. Building on Theorem 3.12 we quickly get:

Theorem 3.22. If κ is Λ-Mahlo, then Vκ satisfies ZMΛ for all µ < Λ, conversely if
ScmZMµ(M) for all µ < Λ then M = Vκ where κ is Λ-Mahlo.

Proof. Suppose κ is Λ-Mahlo. In particular κ is inaccessible so by Theorem 3.8 Vκ satisfies
ZF. To prove MΛ (and hence Mµ for all µ < Λ), we need to show that every normal
function f : κ → κ has for every µ < Λ at least one µ-Mahlo cardinal in its range
(‘defined for all ordinals’ relativises to < κ). But by Lemma 3.21 this is precisely the
definition of Λ-Mahlo.
Suppose M is a standard complete model of ZMΛ. By Theorem 3.12 M = Vκ for some
inaccessible κ. Since M satisfies MΛ, then every function F : κ→ κ has for every µ < Λ
at least one µ-strongly Mahlo cardinal in its range. So by Lemma 3.21 κ is Λ-Mahlo.

In particular, if κ is 1-Mahlo then Vκ is a model of ZM . So this theorem proves that
Mahlo cardinals are inaccessible with respect to ZM and ZN.

This also allows us to define

Lévy’s NΛ. ∀µ < Λ∃u(ScmZMµ(u) ∧ ∀x1, . . . , xn ∈ Vκ(ϕ↔ ϕu).

Hence we are “reflecting reflection”, by repeatedly applying reflection to our system just
obtained. Thus we get a whole sequence S, ZF, ZN, ZN2, . . . , ZNΛ, . . . of increasingly
strong axioms, where each step is comparable to the last. (As discussed in Section 3.3,
these steps are no longer similar when we replace N with N ′′′.)

By Theorem 3.22, N ′′′
Λ and NΛ are equivalent – assuming the same (significant) amount of

second-order logic and Choice as in Theorem 3.12. Further Lévy claims that “by complete
analogy” to N ′′′ and M , N ′′′

Λ and MΛ are equivalent.10 Indeed upon examining the proof
of Theorem 3.17 we see that we may replace ‘inaccessible’ by ‘µ-Mahlo’ for each µ and
the proof will run identically, since N ′′′

Λ gives the existence of a µ-Mahlo cardinal κ (and
corresponding stage Vκ) which is precisely the µ-Mahlo cardinal in the range of the normal
function we begin the proof with.

From MΛ it follows easily that the µ-inaccessible cardinals are unbounded for each µ < Λ
(the result mimics Theorem 3.19, but MΛ is substantially stronger than the statement we
are proving).

Lemma 3.23. Given MΛ, the normal function Rµ(ξ) enumerating the µ-Mahlo cardinals
is defined for all µ < Λ and for all ordinals ξ.

Proof. Let µ be the least ordinal < Λ for which Rµ is not defined for all ordinals and let
ξ be the least ordinal for which Rµ(ξ) is not defined. By MΛ, there exists at least one
µ-Mahlo cardinal so ξ > 0. As in Theorem 3.19 ξ cannot be a limit since otherwise we
could define Rµ(ξ) (since R is a normal function). Write ξ = ξ′ + 1.
Let β = Rµ(ξ′). Let F (η) = β + (η + 1). This is defined for all ordinals, so by MΛ has a
µ-Mahlo cardinal in its range. So there exists a µ-Mahlo cardinal greater than β = Rµ(ξ′),
contradiction.

10Refer to Lévy (1960, Theorem 3) for the proof that M implies N ′′′.
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A more interesting question would be whether we can deduce the existence of µ-Mahlo
cardinals from MΛ for some Λ < µ, as we did in Theorem 3.19 for inaccessible cardinals.
Lévy does not pursue this avenue any further, merely outlining the correspondence be-
tween NΛ and MΛ. This would also require further development of Mahlo’s methods used
in the proof of Theorem 3.19.

Even without such results, the existence of many µ-Mahlo cardinals follows immediately
from each MΛ (for µ < Λ), which in turn follow from N ′′′

Λ . Hence if we can remedy the
gaps in Lévy’s argument to show that the step from N to N ′′′ (and hence also from NΛ to
N ′′′

Λ ) is justified, we may build our hierarchy of axioms N and M and deduce the existence
of unbounded α-inaccessible and α-Mahlo cardinals from them.
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Chapter 4

Conclusion

We started out by examining the roots of set theory and proposing that we ground set
theory in the iterative conception. The iterative conception lends itself to an intuitive
and neat axiomatisation containing a reflection principle. Reflection principles are well-
supported – both as theorems proved in ZFC and as a guideline for viewing the universe
of sets and introducing new axioms. We then critically discussed Lévy’s claim that in a
very similar step to adding Reflection to S (ZF without Infinity and Replacement), we
could strengthen our Axiom of Reflection to give the existence of inaccessible cardinals.
From this new principle we deduced the existence of unbounded classes of inaccessible
and α-inaccessible cardinals. Strengthening Reflection further to a hierarchy of reflection
principles, we gained the existence of Mahlo cardinals.

The aim of this dissertation has been to present the justification leading from the itera-
tive conception via reflection principles to large cardinals. The crucial and most fragile
step is the one from standard complete models to inaccessible cardinals, which requires
a significant amount of second-order logic. We concluded that Lévy’s arguments were
misleading as they relied on the unconditional assumption of second-order Replacement
as part of ZF. Nevertheless, Lévy’s axioms are powerful and have very desirable conse-
quences: in particular the existence of inaccessible cardinals gives us the consistency of
ZFC and supports the use of Grothendieck universes in algebra (see e.g. McLarty, 2010).
Hence further research on the justification of Lévy’s argument and of reflection principles
in general is certainly warranted.
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4.1 Larger cardinals

A number of other types of large cardinal have been linked to (increasingly strong) re-
flection principles, and will gain support if we can further develop our justification of
reflection.

Examples include indescribable cardinals, which are defined in terms of reflection princi-
ples and developed by Hanf and Scott (1961). These provide a systematic approach to
comparing other large cardinals by consistency strength (Kanamori, 2009, p. XVIII).

Measurable and extendible cardinals have also been shown to follow from a strong form
of Reflection by Reinhardt (1974). Measurable cardinals are an important current field of
study, relating closely to descriptive set theory. For example, certain kinds of measurable
cardinal imply that there is a countably additive extension of the Lebesgue measure to
the whole real line (Kanamori, 2009, p.24). Further still, supercompact cardinals can
be expressed in terms of a global reflection property (Kanamori, 2009, p.299). As noted
above, the reflection principles used to justify measurable cardinals in Reinhardt’s paper
are very strong. Wang (1983, p. 555) argues that they are in fact too strong to be implied
by even a maximal iterative conception of sets. (The same may turn out to be true of the
reflection principles needed for all larger cardinals.)

Finally Woodin cardinals (slightly weaker than supercompact cardinals) tie in with the
study of determinacy, another central branch of modern set theory, as shown by Woodin
in 1985 (see Kanamori, 2009, p. 464). Kanamori suggests that we can frame Woodin
cardinals as a “kind of reflection property” (2009, p. 364). If we can link these large
cardinals firmly to reflection principles, this will shed further light on prospective axiom
candidates like the Axiom of Projective Determinacy, which notably implies the Lebesgue
measurability of all projective subsets of the reals.

Alternatively, we can extend reflection to second-order logic. Second-order reflection
principles as postulated e.g. by Bernays have many strong implications, including Global
Choice (Kanamori, 2009, p. 59).

All in all, Reflection principles remain a promising tool for both exploring and justifying
the higher infinite.

Oxford, March 11, 2015.
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Appendix A

Reflection in n variables

Theorem 2.14 (Reflection in n variables).

∀a∃V (a ∈ V ∧ ∀y1, y2, . . . yn ∈ V (ϕ(y1, y2, . . . , yn)↔ ϕV (y1, y2, . . . , yn)))

Proof. Let

ψ1(x) ≡ ∀y1, . . . , yn, z(x = 〈y1, . . . , yn, z〉 → (ϕ(y1, . . . , yn)↔ z = 0))

Let
ψ2 ≡ ∀y1, . . . , yn, z∃w (w = 〈y1, . . . , yn, z〉)

This holds by the Axiom of Pairs in the universe.
Let

ψ3 ≡ ∃u (u = a)

for some fixed (constant) a given above. This is clearly true in the universe.
Their relativisations are:

ψV1 ≡ ∀y1, . . . , yn, z ∈ V (x = 〈y1, . . . , yn, z〉 → (ϕV (y1, . . . , yn)↔ z = 0))

ψV2 ≡ ∀y1, . . . , yn, z ∈ V ∃w ∈ V (w = 〈y1, . . . , yn, z〉)
ψV3 ≡ ∃u ∈ V (u = a)

Let ψ ≡ ψ1 ∧ ψ2 ∧ ψ3. Note that by the above ψ ↔ ψ1. By Reflection applied to ψ, we
have

∃V ∀x ∈ V ((ψ1(x) ∧ ψ2 ∧ ψ3)→ (ψV1 (x) ∧ ψV2 (x) ∧ ψV3 (x)))

⇔ ∃V ∀x ∈ V (ψ1(x)→ (ψV1 (x) ∧ ψV2 (x) ∧ ψV3 (x))) (A.1)

Choose the V given above, fix x, y1, . . . , yn, z ∈ V and suppose ψ1(x) and x = 〈y1, . . . , yn〉.
Then ϕ(y1, . . . , yn) ↔ z = 0. Moreover by (A.1) ψV1 (x) holds (since we assumed ψ1(x)),
so ϕ(y1, . . . , yn)V ↔ z = 0. So ϕ(y1, . . . , yn) iff z = 0 (by ψ1) iff ϕ(y1, . . . , yn)V (by ψV1 ).
We have just shown

∃V ∀x, y1, . . . , yn, z ∈ V ((ψ1(x) ∧ x = 〈y1, . . . , yn, z〉)→ (ϕ(y1, . . . , yn)↔ ϕ(y1, . . . , yn)V ))
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Moreover under the conditions above ψ1(x)→ ψV3 , i.e. ψ1(x)→ a ∈ V . So

∃V ∀x, y1, . . . , yn, z ∈ V ((ψ1(x) ∧ x = 〈y1, . . . , yn, z〉)
→ (a ∈ V ∧ (ϕ(y1, . . . , yn)↔ ϕ(y1, . . . , yn)V )))

Using the standard equivalence ∀x(χ(x)→ ρ)↔ (∃xχ(x)→ ρ) (for x, z not free in ρ) we
pass to

∃V ∀y1, . . . , yn ∈ V (∃x, z ∈ V (ψ′
1(x, z) ∧ x = 〈y1, . . . , yn, z〉)

→ (a ∈ V ∧ (ϕ(y1, . . . , yn)↔ ϕ(y1, . . . , yn)V )))

where ψ′
1(x, z) is ψ1 without quantification over z. It remains to show that

∃x, z ∈ V (ψ′
1(x, z) ∧ x = 〈y1, . . . , yn, z〉)

⇔ ∃z ∈ V (ψ′
1(〈y1, . . . , yn, z〉, z) ∧ 〈y1, . . . , yn, z〉 ∈ V

By (A.1) we have
(z ∈ V ∧ ψ′

1(〈y1, . . . , yn, z〉, z))→ ψV2

i.e. implies 〈y1, . . . , yn, z〉) ∈ V . So we need to show ∃z ∈ V ψ′
1(〈y1, . . . , yn, z〉, z).

ψ1(x) is true iff x is a tuple such that its last value z is chosen to match the “value” of
ϕ(y1, . . . , yn). As long as V contains two distinct elements, we can always make such a
choice of z in V (choose z = 0 if ϕ(y1, . . . , yn) holds, z = 1 = {∅} if not. By Accumulation
0 = ∅ ∈ V ′ for all V ′. Further every stage after the stage V = {∅} contains 1 = {∅}).
If V does not contain two elements, then ∃x ∈ V (x = 〈y1, . . . , yn, z〉 is false as a tuple
of n + 1 > 2 elements cannot be the empty set. So ∃x ∈ V ψ1(x) is vacuously true and
∃x, z ∈ V ψ′

1(x, z) is vacuously true as well.

Thus ∃x, z ∈ V (ψ′
1(x, z) ∧ x = 〈y1, . . . , yn, z〉) holds and so the result follows:

∃V ∀y1, . . . , yn ∈ V (a ∈ V ∧ (ϕ(y1, . . . , yn)↔ ϕ(y1, . . . , yn)V ))
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